Parameters of the Infrasonic Signal Generated in the Atmosphere by a Powerful Volcano Explosion

Authors

DOI:

https://doi.org/10.47774/phag.01.01.2020-1

Keywords:

volcano eruption, infrasonic wave, shock wave, signal amplitude, regression, signal attenuation

Abstract

The purpose of this work is to represent the results of performing regression analysis to fit the distance and the amplitude of the infrasonic signal generated by the explosion of St. Helens volcano, and to estimate a few signal and atmospheric parameters. The pressure amplitude in the explosion wave generated at the beginning of St. Helens volcano eruption was measured at 13 stations in the 0.9 – 39-Mm distance range; based on these data, an attempt has been made to perform a regression analysis to fit amplitude and distance. The regression based on the assumption that the infrasound propagation takes place in a waveguide where it is subject to attenuation is determined to be the most preferable regression. Based on the observations of the shock from the St. Helens volcano eruption, the shock wave energy and mean power have been estimated to be ~1016 J and ~2.3 TW, respectively. Based on the observations of the amplitude and duration of the trains of the infrasonic wave generated by the St. Helens volcano eruption, the infrasonic wave energy and mean power have been estimated to be ~1016 J and ~2 TW, respectively. Both estimates are in good agreement, but they are significantly different from those found in the literature; the latter seem to be overestimated. From the regression expression obtained, the penetration depth of the infrasonic wave is obtained to be about 33 Mm, whereas at other stations this scale length is estimated to be close to 24 Mm. Based on the theoretical dependence of the attenuation coefficient due to atmospheric turbulence, the attenuation length of the infrasound wave has been estimated for infrasound with 10–300-s periods. For 20–300-s periods, this value has been shown to be significantly larger than the values determined from the observations. Other mechanisms for attenuating the infrasonic signal are discussed (the partial radiation of the infrasonic energy through and losses due to the reflection from the waveguide walls). At the same time, the wave attenuation due to their scattering by turbulent fluctuations can be significant for the periods smaller than 20–50 s, depending on the turbulence intensity. Comparison of the regression functions obtained with the corresponding regression expressions for other sources of infrasound waves propagating in the atmosphere has been made.

References

Gossard, E. E. & Hooke, Y. X. (1975). Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves, Their Generation and Propagation (Developments in Atmospheric Science). Elsevier Scientific Pub. Co.

Kulichkov, S. N., Bush, G. A., Popov, O. E., Raspopov, O. M., ReVelle, D. O., Whitaker, R. W., Avilov, K. V., & Baryshnikov, A. K. (1982). On anomalously fast infrasonic arrivals at long distances from surface explosions. Izvestiya. Atmospheric and Oceanic Physics, 28(4), 339 – 359.

Ponomarev, E. A. & Erushchenkov, A. I. (1977). Infrasonic waves in the Earth’s atmosphere (review). Radiophysics and Quantum Electronics, 20(12), 1218–1229.

Le Pichon, A., Blanc, E., & Hauchecorne, A. eds. (2019). Infrasound Monitoring for Atmospheric Studies. New York: Springer.

Chernogor, L. F., (2012). Physics and Ecology of Disasters. Kharkiv: V. N. Karazin Kharkiv National University Publ. [in Russian].

Donn, W. L. & Ewing, M. (1962). Atmospheric waves from nuclear explosions, I, The Soviet test of 30 October 1961. Journal Geophysical Research, 67, 1952–1961.

Donn, W. L. & Ewing, M. (1962). Atmospheric waves from nuclear explosions, II, The Soviet test of 30 October 1961. Journal of the Atmospheric Sciences, 19, 264 – 273.

Donn, W. L., Shaw, D. M., & Hubbard, A. C. (1963). The microbarograph detection of nuclear explosions. IEEE Transactions on Nuclear Science, 10, 285–296.

Che, I. Y., Park, J., Kim, I., Kim, T. S., Lee, H. I. (2014). Infrasound signals from the underground nuclear explosions of North Korea. Geophysical Journal International, 198(1), 495–503.

Donn, W. L., Posmentier, E., Fehr, U., & Balachandran, N. K. (1968). Infrasound at long range from Saturn V, 1967. Science, 162(3858), 1116–1120.

Balachandran, N. K. & Donn, W. L. (1971). Characteristics of Infrasonic Signals from Rockets. Geophysical Journal International, 26(1–4), 135–148.

Balachandran, N. K., Donn, W. L., & Rind, D. H. (1977). Concorde sonic booms as an atmospheric probe. Science, 197(4298), 47–49.

Donn, W. L. (1978). Exploring the Atmosphere with Sonic Booms: Or How I Learned to Love the Concorde. American Scientist, 66(6), 724–733.

Pichon, A., Garcés, M., Blanc, E., Barthélémy, M., & Drob, D. P. (2002). Acoustic propagation and atmosphere characteristics derived from infrasonic waves generated by the Concorde. The Journal of the Acoustical Society of America, 111(1), 629–641.

Olson, J. (2012). Infrasound rocket signatures. Advanced Maui Optical and Space Surveillance Technologies Conference, 1, 638–645.

Cook, R. K. & Young, J. M. (1962). Strange Sounds in the Atmosphere. Part II. Sound: Its Uses and Control, 1(3), 25–33.

Landès, M., Ceranna, L., Le Pichon, A., & Matoza, R. S. (2012). Localization of microbarom sources using the IMS infrasound network. Journal Geophysical Research, 117, D06102, doi:10.1029/2011JD016684.

Le Pichon, A., Herry, P., Mialle, P., Vergoz, J., Brachet, N., Garcés, M., Drob, D., & Ceranna, L. (2005). Infrasound associated with 2004–2005 large Sumatra earthquakes and tsunami. Geophysical Research Letter, 32, Article L19802. doi:10.1029/2005GL023893.

Bolt, B. A. & Tanimoto, T. (1981). Atmospheric oscillations after the May 18, 1980, eruption of Mount St. Helens. Eos Trans. AGU, 62, 529–530.

Donn, W. L. & Balachandran, N. K. (1981). Mount St. Helens eruption of 18 May 1980: Air waves and explosive yield. Science, 213(4507), 539–541.

Edman, D. A. & Selin, R. (1981). A note on the Mount St. Helens volcanic eruption. Monthly Weather Review, 109, 1103–1110.

Kieffer, S. W. (1981). Blast dynamics at Mount St. Helens on 18 May 1980. Nature, 291, 568–570.

Banister, J. R. (1984). Pressure wave generated by the Mount St. Helens eruption. Journal Geophysical Research, 89, 4895–4904.

Reed, J. W. (1987). Air pressure waves from Mount St. Helens eruptions. Journal Geophysical Research, 92(D10), 11979–11992, doi:10.1029/JD092iD10p11979.

Balachandran, N. K. (1979). Infrasonic signals from thunder. Journal Geophysical Research, 84(C4), 1735–1745.

Maeda, K. & Young, J. (1966). Propagation of pressure waves produced by auroras. Journal of Geomagnetism and Geoelectricity, 18(2), 275–299.

ReVelle, D. O. (1976). On meteor‐generated infrasound. Journal of Geophysical Research, 81(7), 1217–1230.

ReVelle, D. O. (1997). Historical detection of atmospheric impacts by large bolides using acoustic gravity waves. Near-Earth Objects / Ed. J. Remo. Annals of the New-York Academy of Science, 822, 284–302.

Chernogor, L. F. & Shevelev, M. B. (2016). Infrasonic effects parameters generated by the Chelyabinsk meteoroid on 15 February 2013. Visnyk of V. N. Karazin Kharkiv National University, series “Radio Physics and Electronics”, 25, 70–73.

Lazorenko, O. V. & Chernogor, L. F. (2017). System Spectral Analysis of Infrasonic Signal Generated by Chelyabinsk Meteoroid. Radioelectronics and Communications Systems. 60(8), 331–338.

Chernogor, L. F. (2017). Chelyabinsk meteoroid acoustic effects. Radio Phys. Radio Astron., 22(1), 53–66 [In Russian].

Chernogor, L. F. & Liashchuk, O. I. (2017). Parameters of Infrasonic Waves Generated by the Chelyabinsk Meteoroid on February 15, 2013. Kinematics and Physics of Celestial Bodies, 33(2), 79–87.

Chernogor, L. F. & Liashchuk, O. I. (2017). Infrasound observations of the bolide explosion over Romania on January 7, 2015. Kinematics and Physics of Celestial Bodies, 33(6), 276–290.

ElGabry, M. N., Korrat, I. M., Hussein, H. M., & Hamama, I. H. (2017). Infrasound detection of meteors. NRIAG Journal of Astronomy and Geophysics, 6(1), 68–80.

Chernogor, L. F. (2018). Parameters of Acoustic Signals Generated by the Atmospheric Meteoroid Explosion over Romania on January 7, 2015. Solar System Research, 52(3), 206–222.

Chernogor, L. F. & Shevelev, M. B. (2018). Characteristics of the infrasound signal generated by Chelyabinsk celestial body: global statistics. Radio Phys. Radio Astron., 23(1), 24–35 [In Russian].

Chernogor, L. F. & Shevelev, M. B. (2018). Infrasound wave generated by the Tunguska celestial body: amplitude dependence on distance. Radio Phys. Radio Astron., 23(2), 94–103.

Chernogor, L. F. & Shevelev, M. B. (2018). Parameters of the infrasound signal generated by a meteoroid over Indonesia on October 8, 2009. Kinematics and Physics of Celestial Bodies, 34(3), 147–160.

Chernogor, L. F. & Shevelev, M. B. (2020). Characteristics of Infrasonic Signals Generated by the Lipetsk Meteoroid: Statistical Analysis. Kinematics and Physics of Celestial Bodies. 36(4), 186–194.

Chernogor, L. F., Liashchuk, O. I. & Shevelev, M. B. (2020). Parameters of the Infrasonic Signal Generated by the Kamchatka Meteoroid. Kinematics and Physics of Celestial Bodies, 36(5), 222–237.

Chum, J., Liu, J.-Y., Podolská, K., Šindelářová, T. (2018). Infrasound in the ionosphere from earthquakes and typhoons. J. Atmos. Sol. Terr. Phys., 171, 72–82. doi:/10.1016/j.jastp.2017.07.022

Dolgikh, G. I., Chupin, V. A. & Gusev, E. S. (2019). Infrasound Strain Perturbations Caused by Typhoons. Izv., Phys. Solid Earth. 55, 792–800. https://doi.org/10.1134/S1069351319050033

Roberts, D. H., Klobuchar, J. A., Fougere, P. F., Hendrickson, D. H. (1982). A large-amplitude traveling ionospheric disturbance produced by the May 18, explosion of Mount St. Helens. JGR: Space Physics, 87(A8), 6291–6301. DOI: 10.1029/JA087iA08p06291

Roberts, D. H., Rogers, A. E. E., Allen, B. R., Bennett, C. L., Burke, B. F, Greenfield, P. E, Lawrence, C. R., Clark, T. A. (1982). Radio Interferometric Detection of a Traveling Ionospheric Disturbance Excited by the Explosion of Mount St. Helens. JGR: Space Physics, 87(A8), 6302–6306. DOI: 10.1029/JA087iA08p06302

Liu, C. H., Klostermeyer, J., Yeh, K. C., Jones, T. B., Robinson, T., Holt, O., Leitinger, R., Ogawa, T., Sinno, K., Kato, S., Ogawa, T., Bedard, A. J., Kersley, L. (1982). Global dynamic responses of the atmosphere to the eruption of Mount St. Helens on May 18, 1980. JGR: Space Physics, 87(A8), 6281–6290.

DOI: 10.1029/JA087iA08p06281

Glasstone, S. & Dolan, P. J. (1977). The effects of nuclear weapons. US Department of Defense and US Department of Energy, US Government Printing Office, Washington, DC.

Reed, J. W. (1977). Atmospheric attenuation of explosion waves. The Journal of the Acoustical Society of America, 61, 39–47.

Published

2020-11-18

How to Cite

Черногор, Л. (2020). Parameters of the Infrasonic Signal Generated in the Atmosphere by a Powerful Volcano Explosion. PHYSICS OF ATMOSPHERE AND GEOSPACE, 1(1), 5-20. https://doi.org/10.47774/phag.01.01.2020-1